1.8 Scientific Notation and Other Ways of Writing Numbers

This is an easy and practical short cut to writing very large or very small numbers. It uses powers of 10 .

Power	Number	Name	Prefix	symbol
10^{1}	10	Ten	Deca	da
10^{2}	100	Hundred	Hector	h
10^{3}	1000	Thousand	Kilo	K
10^{6}	1000000	Million	Mega	M
10^{9}	1000000000	Billion	Giga	G
10^{12}	1000000000000	Trillion	Tera	T

Positive exponents mean very large \#, the exponent is the number of zeros you have.
When you multiply by 10^{n}, the decimal point moves n places to the right

Power	Number	Name	Prefix	symbol
10^{-1}	0.1	Tenth	Deci	d
10^{-2}	0.01	Hundredth	Centi	c
10^{-3}	0.001	Thousandth	Milli	m
10^{-6}	0.000001	Millionth	Micro	μ
10^{-9}	0.000000001	Billionth	Nano	n
10^{-12}	0.000000000001	Trillionth	Pico	P

Negative exponents mean very small \#, the exponent is the number of decimal places you have.
When you divide by 10^{n}, the decimal point moves n places to the left.

A positive number in scientific notation is in the form:
$a \times 10^{n}$ where $1 \leq a<10$; and n is an integer.

